Eg H

S

19.1

CHAPTER

Our coverage of operating-system issues thus far has focused mainly on
general-purpose computing systems (for example, desktop and server sys-
tems). In this chapter, we turn our attention to real-time computing systems.
The requirements of real-time systems differ from those of many of the systems
we have described, largely because real-time systems must produce results
within certain deadlines. In this chapter we provide an overview of real-
time computer systems and describe how real-time operating systems must
be constructed to meet the stringent timing requirements of these systems.

A real-time system is a computer system that requires not only that the
computing results be “correct” but also that the results be produced within
a specified deadline period. Results produced after the deadline has passed -
even if correct—may be of no real value. To illustrate, consider an autonomous
robot that delivers mail in an office complex. If its vision-control system
identifies a wall after the robot has walked into it, despite correctly identifying
the wall, the system has not met its requirement. Contrast this timing
requirement with the much less strict demands of other systems. In an
interactive desktop computer system, it is desirable to provide a quick response
time to the interactive user, but it is not mandatory to do so. Some systems
— such as a batch-processing system— may have no timing requirements
whatsoever.

Real-time systems executing on traditional computer hardware are used
in a wide range of applications. In addition, many real-time systems are
embedded in “specialized devices,” such as ordinary home appliances (for
example, microwave ovens and dishwashers), consumer digital devices (for
example, cameras and MP3 players), and communication devices (for example,
cellular telephones and Blackberry handheid devices). They are also present
in larger entities, such as automobiles and alrplanes An embedded system is
a computing device that is part of a larger system in which the presence of a
compuiting device is often not obvious to the user.

To illustrate, consider an embedded system for controlling a home dish-
washer. The embedded system may allow various options for scheduling the

673

074

19.2

Chapter 19

operation of the dishwasher—the water temperature, the type of cleaning
(light or heavy), even a timer indicating when the dishwasher is to start. Most
likely, the user of the dishwasher is unaware that there is in fact a computer
embedded inthe appliance. As another example, consider anembedded system
controlling antilock brakes in an automobile. Tach wheel in the automobile has
a sensor detecting how much sliding and traction are occurring, and each
sensor continuaily sends its dats o the svstem controller. Taking the results
from these sensors, the controlier tells the braking mechanisim in each wheel
how much braking pressure (o apply. Again, to the user {in this instance, the
driver of the automobile), the presence of an embedded computer system may
not be apparent. Itis important to note, however, thatnot ail embedded systems
are real-time. For example, an embedded system controlling a home furnace
may have no real-time requirements whalsoever.

Some real-time systems are identitied as safety-critical systems. In a
safety-critical system, incorrect operation-—usually due to a missed deadiine
—results in some sort of “catastrophe.” Examples of safety-critical systems
include weapons systems, antilock brake systems, flight-management systems,
and health-related embedded svstems, such as pacemakers. In these scenarios,
the real-time system musi respond to events by the specified deadlines;
otherwise, serious injury—-or worse —might occur. However, a significant
majority of embedded systems do not qualify as safety-critical, including FAX
machines, microwave ovens, wiistwatches, and networking devices such as
switches and routers. For these devices, missing deadline requirements results
in nothing rmore than perhaps an unhappy user.

Real-time computing is of two tvpes: hard and soft. A hard real-time
system has the most stringent requirements, guaranteeing that critical real-
time tasks be completed within their deadlines. Safety-critical systems are
typically hard real-time systems. A soft real-time system is less restrictive,
simply providing that a critical real-time task will receive priority over other
tasks and that it will retain that priority until it completes. Many commercial
operating systems—as weli as Linux —provide soft real-time support.

In this section, we explore the characteristics of real-time systems and address
issues related to designing both soft and hard real-time operating systems.
The following characteristics are typical of many real-time systems:

+ Single purpose
Small size
« Inexpensively mass-produced
Specific timing requirements
We next examine each of these characteristics.
Unlike PCs, which are put to many uses, a real-time system typically serves

only a single purpose, such as controlling antilock brakes or delivering music
on an MP2 player. It is unlikely that a real-time system controlling an airliner’s

19.2 675

navigation system will also play DVDs! The design of a real-time operating
system reflects its single-purpose nature and is often quite simple.

Many real-time systems exist in environments where physical space is
constrained. Consider the amount of space available in a wristwatch or a
microwave oven—it is considerably less than what is available in a desktop
computer. As a result of space constraints, most real-time systems lack both
the CPU processing power and the amount of memory available in standard
desktop 'Us. Whereas most contemporary desktop and server systems use 32-
or 64-bit processors, many real-time systems run on 8- or 16-bit processors.
Similarly, a desktop PC might have several gigabytes of physical memory,
whereas a real-time system might have less than a megabyte. We refer to the
footprint of a system as the amount of memory required to run the operating
system and its applications. Because the amount of memory is limited, most
real-time operating systems must have small footprints.

Next, consider where many real-time systems are implemented: They are
often found in home appiiances and conswmer devices. Devices such as digital
cameras, microwave ovens, and thermostats are mass-produced in very cost-
conscious environments. Thus, the microprocessors for real-time systems must
also be inexponqively mass-produced.

One technique for reducing the cost of an embedded controller is to
use an alternative t(‘chmque for organizing the compuonents of the computer
system. Rather than organizing the computer around the structure shown in
Figure 19.1, where buses provide the interconnection mechanism to individual
components, many embedded systemy controllers use a strategy known as
system-on-chip (SOC). Here, the CPU, memory (including cache), memory-
managtmult-umt {(MMU]}, and any attached perlphel al ports, such as USB ports,
are contained in a single integrated circuit. The $SOC strategy is ty prcalh less
expensive than the bus-otiented organization of Figure [9.1.

We turn now to the final characteristic identified above for real-time
systems: specific timing requirements. It is, in fact, the defining characteristic of
such systems. Accordingly, the defining characteristic of both hard and soft real-
time operating systems is to support the timing requiremenis of real-time tasks,

MOUSE keyboard printer monitor

dlsks é/ 5 ooy _
| ~N 10

. : dieke . - graphics
we ’ - controliar: | USB controller ad

| | |

memory

Figure 19.1 Bus-oriented organization.

676

19.3

Chapter 19

and the remainder of this chapter focuses on this issue. Real-time operating
systems meet timing requirements by using scheduling algorithms that give
real-time processes the highest scheduling priorities. Furthermore, schedulers
must ensure that the priority of a real-time task does not degrade over time. A
second, somewhat related, technique for addressing timing requirements is by
minimizing the response time to events such as interrupts.

In this section, we discuss the features necessary for designing an operating
system that supports real-time processes. Before we begin, though, let’s
consider what is typically not needed for a real-time system. We begin
by examining several features provided in many of the operating systems
discussed so far in this text, including Linux, UNIX, and the various versions
of Windows. These systems typically provide support for the following:

A variety of peripheral devices such as graphical displays, CD, and DVD
drives

Protection and security mechanisms

Multiple users

Supporting these features often results in a sophisticated —and large—kernel.
For example, Windows XP has over forty million lines of source code. In
contrast, a typical real-time operating system usually has a very simple design,
often writtén in thousands rather than millions of lines of source code. We
would not expect these simple systems to include the features listed above.
But why don’t real-time systems provide these features, which are crucial
to standard desktop and server systems? There are several reasons, but three
are most prominent. First, because most real-time systems serve a single
purpose, they simply do not require many of the features found in a desktop
PC. Consider a digital wristwatch: It obviously has no need to support a
disk drive or DVD, let alone virtual memory. Furthermore, a typical real-time
system does not include the notion of a user: The system simply supports
a small number of tasks, which often await input from hardware devices
{sensors, vision identification, and so forth). Second, the features supported
by standard desktop operating systems are impossible to provide without fast
processors and large amounts of memory. Both of these are unavailable in
real-time systems due to space constraints, as explained earlier. In addition,
many real-time systems lack sufficient space to support peripheral disk drives
or graphical displays, although some systems may support file systems using
nonvolatile memory (NVRAM). Third, supporting features common in standard
desktop computing environments would greatly increase the cost of real-time
systems, which could make such systems economically impractical.
Additional considerations apply when considering virtual memory in a
real-time system. Providing virtual memory features as described in Chapter 9
require the system include a memory management unit (MMU) for translating
logical to physical addresses. However, MMUs typically increase the cost
and power consumption of the system. In addition, the time required to

193 Footieown o e 677

physical
memory
' _“"“*j
P=L process A
relocation P-L+R
register » process B
R
.
L]
kemel
i ;

Figure 19.2 Address translation in real-time systems.

translate logical addresses to physical addresses—especially in the case of a
translation look-aside buffer (TLB) miss-— may be prohibitive in a hard real-time
environment. In the following we examine several appraoches for translating
addresses in real-time systems.

Figure 19.2 illustrates three different strategies for managing address
translation available to” designers of real-time operating systems. In this
scenario, the CPU generates logical address L that must be mapped to
physical address P. The first approach is to bypass logical addresses and
have the CPU generate physical addresses directly. This technique—known
as real-addressing mode—does not employ virtual memory techniques and
is effectively stating that P equals L. One problem with real-addressing mode
is the absence of memory protection between processes. Real-addressing mode
may also require that programmers specify the physical location where their
programs are loaded into memory. However, the benefit of this approach
is that the system is quite fast, as no time is spent on address translation.
Real-addressing mode is quite common in embedded systems with hard
real-time constraints. In fact, some real-time operating systems running on
microprocessors containing an MMU actually disable the MMU to gain the
performance benefit of referencing physical addresses directly.

A second strategy for translating addresses is to use an approach similar
to the dynamic relocation register shown in Figure 8.4. In this scenario, a
relocation register R is set to the memory location where a program is loaded.
The physical address P is generated by adding the contents of the relocation
register R to L. Some real-time systems configure the MMU to perform this way.
The obvious benefit of this strategy is that the MMU can easily translate logical
addresses to physical addresses using P = L + R. However, this system still
suffers from a lack of memory protection between processes.

The last approach is for the real-time system to provide full virtual memory
functionality as described in Chapter 9. In this instance, address translation
takes place via page tables and a translation look-aside buffer, or TLB. In
addition to allowing a program to be loaded at any memory location, this
strategy also provides memory protection between processes. For systems
without attached disk drives, demand paging and swapping may not be
possible. However, systems may provide such features using NVRAM flash

678

19.4

Chapter 19

memory. The LynxOS and OnCore Systems are examples of real-time operating
systems providing full support for virtual memory.

Keeping in mind the many possible variations, we now identify the features
necessary for implementing a real-time operating system. This list is bv no
means absolute; some systems provide more features than we list below, svhile
other systeins provide fewer.

Preemptive, priority-based scheduling
Preemptive kernel

Minimized latency

One notable feature we omit from this list is networking support. How-
ever, deciding whether to support networking protocols such as TCP/IP is
simple: If the real-time system must be connected to a network, the operating
system must provide networking capabilities. For example, a system that
gathers real-time data and transmits it to a server must obviously include
networking features. Alternatively, a self-contained embedded svstem requir-
ing no interaction with other computer systems has no obvious networking
requirement.

In the remainder of this section, we examine the basic requirements listed
above and identify how they can be implemented in a real-time operating
system.

19.4.1 Priority-Based Scheduling

The most important feature of a real-time operating system is to respond
immediately to a real-time process as soon as that process requires the CPU.
As a result, the scheduler for a real-time operating system must support a
priority-based algorithm with preemption. Recall that priority-based schedul-
ing algorithms assign each process a priority based on its importance; more
important tasks are assigned higher priorities than those deemed less impor-
tant. If the scheduler also supports preemption, a process currently running
on the CPU will be preempted if a higher-priority process becomes available to
rum.

Preemptive, priority-based scheduling algorithms are discussed in detail
in Chapter 5, where we also present examples of the soft real-time scheduling
features of the Solaris, Windows XP, and Linux operating systems. Fach of
these systems assigns real-time processes the highest scheduling priority. For
example, Windows XP has 32 different priority levels; the highest Jevels—
priority values 16 to 31—are reserved for real-time processes. Solaris and
Linux have similar prioritization schemes.

Note, however, that providing a preemptive, priority-based scheduler only
guarantees soft real-time functionality. Hard real-time systems must further
guarantee that real-time tasks will be serviced in accord with their deadline
requirements, and making such guarantees may require additional scheduling

19.4 ' : i [CARRERS 679

features. In Section 19.3, we cuver scheduling algorithms appropriate for hard
real-time systems.

19.4.2 Preemptive Kernels

Nonpreemptive kernels disallow preemption of a process running in kernel
mode; a kernel-mode process will run until it exits kernel mode, blocks, or
voluntarily yields control of the CPU. In contrast, a preemptive kernel allows
the preemption of a task running in kernel mode. Designing preemptjve
kernels can be quite difficult; and traditional user-oriented applications such
as spreadsheets, word processors, and web browsers typically do not require
such quick response times. As a result, some commercial desktop operating
systems —such as Windows XP—are nonpreemptive.

However, to meet the timing requirements of real-time systems—in partic-
ular, hard real-time systems—preemptive kernels are mandatory. Otherwise,
a real-time task might have to wait an arbitrarily long period of time while
another task was active in the kernel.

There are various strategies for making a kernel preemptible. One approach
is to insert preemption points in long-duration system calls. A preemption
point checks to see whether a high-priority process needs to be run. If so, a
context switch takes place. Then, when the high-priority process terminates,
the interrupted process continues with the system call. Preemption points
can be placed only at safe locations in the kernel—that is, only where kernel
data structures are not being modified. A second strategy for making a kernel
preemptible is through the use of synchronization mechanisms, which we
discussed in Chapter 6. With this method, the kernel can alwaysbe preemptible,
because any kernel data being updated are protected from modification by the
high-priority process.

19.4.3 Minimizing Latency

Consider the event-driven nature of a real-time system: The system is typically
waiting for an event in real time to occur. Events may arise either in software
—as when a timer expires—or in hardware—as when a remote-controlled
vehicle detects that it is approaching an obstruction. When an event occurs, the

event E first occurs

event latency

g t

T

real-time system responds to E

¥

Time

Figure 19.3 Event latency.

680

Chapter 19 R..0 -0y

~ system must respond to and service it as quickly as possible. We refer to event

latency as the amount of time that elapses from when an event occurs to when
it is serviced (Figure 19.3).

Usually, different events have different latency requirements. For example,
the latency requirement for an antilock brake system might be three to five
milliseconds, meaning that from the time a wheel first detects that it is sliding,
the system controlling the antilock brakes has three to five milliseconds to
respond to and control the situation. Any response that takes longer might
result in the automobile’s veering out of control. In contrast, an embedded
system controlling radar in an airlmer might tolerate a latency period of several
seconds.

Two types of latencies affect the performance of real-time systemns:

Interrupt latency
.. Dispatch latency

Interrupt latency refers to the period of time from the arrival of an interrupt
at the CPU to the start of the routine that services the interrupt. When an
interrupt occurs, the operating system must first complete the instruction it
is executing and determine the type of interrupt that occurred. It must then
save the state of the current process before servicing the interrupt using the
specific interrupt service routine (ISR). The total time required to perform these
tasks is the interrupt latency (Figure 19.4). Obviously, it is crucial for real-time
operating systems to minimize interrupt latency to ensure that real-time tasks
receive immedijate attention.

One important factor contributing to interrupt latency is the amount of time
interrupts may be disabled while kernel data structures are being updated.
Real-time operating systems require that interrupts to be disabled for very

interrupt

1 determine
task T running igterrupt
t pe
context

switch

=R

interrupt
latency

time

Figure 19.4 Interrupt latency.

194 . SR NI F R RS AL S SO AR 681

short periods of time. However, for hard real-time systems, interrupt latency
must not only be minimized, it must in fact be bounded to guarantee the
deterministic behavior required of hard real-time kernels.

The amount of time required for the scheduling dispatcher to stop one
process and start another is known as dispatch latency. Providing real-time
tasks with immediate access to the CPU mandates that real-time operating
systems minimize this latency. The most effective technique for keeping
dispatch latency low is to provide preemptive kernels. ’

In Figure 19.5, we diagram the makeup of dispatch latency. The conflict
phase of dispatch iatency has two components:

Preemption of any process running in the kernel

Release by low-priority processes of resources needed by a high-priority
process

As an example, in Solaris, the dispatch latency with preemption disabled is
over 100 milliscconds. With preemption enabled, it is reduced te less than a
millisecond.

One issue that can affect dispatch latency arises when a higher-priority
process needs to read or modify kernel data that are currently being accessed
by a lower-priority process—or a chain of lower-priority processes. As kernel
data are typically protected with a lock, the higher-priority process will have to
wait for a lower-priority one to finish witi1 the resource. The situation becomes
more complicated if the lower-priority process is preempted in favor of another
process with a higher priority. As an example, assume we have three processes,
L, M, and H, whose priorities follow the order L < M < H. Assume that

event response to event

<+ response interval >

process made
interrupt availabie
_processing

+———— dispatch latency ————#

real-time
process
execution
te—— conflicts — dispatch —w
——
time

Figure 19.5 Dispatch latency.

682

19.5

Chapter 19

process H requires resource R, which is currently being accessed by process L.
Ordinarily, process H would wait for L to finish using resource R. However,
now suppose that process M becomes runnable, thereby preempting process
L. Indirectly, a process with a lower priority—process M-—has affected how
long process H must wait for L to relinquish resource R.

This problem, known as priority inversion, can be solved by use of the
priority-inheritance protocol. According to this protocol, all processes that
are accessing resources needed by a higher-priority process inherit the higher
priority until they are finished with the resources in question. When they
are finished, their priorities revert to their original values. In the example
above, a priority-inheritance protocol allows process . to temporarily inherit
the priority of process H, thereby preventing process M from preempting its
execution. When process L has finished using rescurce R, it relinquishes its
inherited priority from H and assumes its original priority. As resource R is
now available, process H—not M—will run next.

Our coverage of scheduling so far has focused primarily on soft real-time
systems. As mentioned, though, scheduling for cuch systems provides no
guarantee on when a critical process will be scheduled; it guarantees only that
the process will be given preference over noncritical processes. Hard real-time
systems have stricter requirements. A task must be serviced by its deadline;
service after the deadline has expired is the same as no service at all.

We now considcer scheduling for hard real-time systems. Before we proceed
with the details of the individual schedulers, however. we must define certain
characteristics of the processes that are to be scheduled. First, the processes
are considered periodic. That is, thev require the CPL at constant intervals
(periods). Each periodic process has a fixed processing time f once it acquires
the CPU, a deadline d when it must be serviced by the €PL, and a period p.
The relationship of the procesting time, the deadline, and the period can be
expressed as 0 < f = < p. The rate of a periodic task is 1/p. Figure 19.6
illustrates the execution of a periodic process aver time. Schedulers can take
advantage of this relationship and assign priorities according to the deadline
or rate requirements of a periodic process.

I i i ! Time
Period, Period,; Pericd,

Figure 19.6 Periodic task.

19.5 683

Deadlines Py P, Pz

| !

{ P 1 P | | I l i L ! '
0 10 20 30 40 50 60 70 80 90 100 110 120

Figure 19.7 Scheduting of tasks when £, has a higher priorty than F.

What is unusual about this form of scheduling is that a process may have to
announce its deadline requirements to the scheduler. Then, using a technique
known as an admission-control algorithm, the scheduler either admits the
process, guaranteeing that the process will complete on time, or rejects the
request as impossible if it cannot guarantee that the task will be serviced by its
deadline,

In the following sections, we explore scheduling algorithms that acldress
the deadline requirements of hard real-time systems.

19.5.1 Rate-Mongctonic Scheduling

The rate-monotonic scheduling algorithm schedules periodic lasks using «
static priority policy with preemption. If a lower-priority process is running
and a higher-priority process becomes available to run, it will preempt the
lower-priority process. Upon entering the system, each periodic task is assigned
a priority inversely based on its period: The shorter the period, the higher the
priority; the longer the period, the lower the priority. The rationale behind this
policy is to assign a higher priority to tasks that require the CPL more often.
Furthermore, rate-monotonic scheduling assumes that the processing time of
a periodic process is the same for each CPU burst. That is, every time a process
acquires the CPU, the duration of its CPU burst is the same.

Let's consider an example. We have two processes Py and 72 The periods
for I and Ps are 50 and 100, ro.spectively—-that is, ;p =5 and pz = 100, The
processing times are f; = 20 for P and £ = 35 for P2, The deadline for each
process requires that it complete its CPU burst by the start of its next pertod.

We must first ask ourselves whether it is possible to schedule these tasks
so that each meets its deadlines. If we measure the CPU utilization of a process
P. as the ratio of its burst to its period—f,/p;—thc CPU utilization of Py is
20/50 = (.40 and that of P, is 35/100 = 0.35, for a total CPU atilization of 75
percent. Thercfore, it seems we can schedule these tasks in such a way that
both meet their deadlines and still leave the CPU with available cvcles.

First, suppose we assign P; a higher priority than P;. The execution of [
and I is shown in Figure 19.7. As we can see, P, starts execution first and
completes at time 35. At this point, P starts; it completes its CPL burst at time
55. However, the first deadline for P; was at time 50, so the scheduler has
caused P; to miss its deadline.

Now suppose we use rate-monotonic scheduling, in which we assign
a higher priority than Py, since the period of Py is shorter than that of M.
The execution of these processes is shown in Figure 19.8. Py starts first and
completes its CPU burst at time 20, thereby meeting its first deadline. P- starts
running at this point and runs until time 50. At this time, it is preempted by
P;, although it still has 5 milliseconds remaining in its CPU burst. Py completes

684

Chapter19 © . ; .orv sewrome

Deadiines Py Py Py P, P, P,

l } } !

R [Pay T Py IPE_L L 1 E f«;ﬁ?"?’*i Be Py,
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 180 170G 180 190 200

Figure 19.8 Rate-monotonic scheduling.

its CPU burst at time 70, at which point the scheduler resumes P Py completes
its CPU burst at time 75, also meeting its first deadline. The system is idle until
time 100, when Py is scheduled again.

Rate-monotonic scheduling is considered optimal in the sense that if a set
of processes cannot be scheduled by this algorithm, it cannot be scheduled
by any other algorithm that assigns static priorities. Let’s next examine a set
of processes that cannot be scheduled using the rate-monotonic algorithm.
Assume that process P has a period of p1 = 50 and a CPU burst of ¢ = 25,
For P, the corresponding values are P2 = 80 and » = 35. Rate-monotonic
scheduling would assign process P; a higher priority, as it has the shorter
period. The total CPU utilization of the two processes 1s (25/50)+(35/80) = 0.94,
and it therefore seems logical that the two processes could be scheduled and
still leave the CPU with 6 percent available time. The Gantt chart showing the
scheduling of processes Py and P; is depicted in Figure 19.9. Initially, P, runs
until it completes its CPU burst at time 25. Process P, then begins running and
runs until time 50, when it is preempted by P;. At this point, P> still has 10
milliseconds remaining in its CPU burst. Process P; runs until time 75; however,
P misses the deadline for completion of its CPU burst at time 80.

Despite being optimal, then, rate-monotonic scheduling has a limitation:
Cru utilization is bounded, and it is not always possibie to fully maximize CPU
resources. The worst-case CPU utilization for scheduling N processes is

2027 — 1y,

With one process in the system, CPU utilization is 100 percent; but it falls
to approximately 69 percent as the number of processes approaches infinity.
With iwo processes, CPU utilization is bounded at about 83 percent. Combined
CPU utilization for the two processes scheduled in Figures 19.7 and 19.8 is 75
petcent; and therefore, the rate-monotonic scheduling algorithm is guaranteed
to schedule them so that they can meet their deadlines. For the two processes
scheduled in Figure 19.9, combined CPU utilization is approximately 94
percent; therefore, rate-monotonic scheduling cannot guarantee that they can
be scheduled so that they meet their deadlines.

Deadlines P, P, Py Py Py

| } } o
[|P14I1.Pai !PIIME] | |] ! ;)

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Figure 19.9 Missing deadlines with rate-monotonic scheduling.

19.5 - : 685

Deadlines P, Ps P, Py P

| } | b

| 1P1 Ii.'l." rP2 Il 1P1 1IQP2| |p1 |i1P2|l| J
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Figure 19.10 Earliest-deadline-first scheduling.

19.5.2 Earliest-Deadline-First Scheduling

Earliest-deadline-first (EDF) scheduling dynamically assigns priorities accord-
ing to deadline. The earlier the deadline, the higher the priority; the later the
deadline, the lower the priority. Under the EDF policy, when a process becomes
runnable, it must announce its deadline requirements to the system. Prioritics
may have to be adjusted to reflect the deadline of the newly runnable process.
Note how this differs from rate-monotonic scheduling, where priorities are
fixed.

To illustrate EDF scheduling, we again schedule the processes shown in
Figure 19.9, which failed to meet deadline requirements under rate-monotonic
scheduling. Recall that Py has values of py = 50 and / = 25 and that P; has
values p; = 80 and t, = 35. The EDF scheduling of these processes is shown in
Figure 19.10. Process Py has the earliest deadline, so its initial priority is higher
than that of process P;. Process P; begins running at the end of the CPU burst
for P;. However, whereas rate-monotonic scheduling allows P; to preempt P;
at the beginning of its next period at time 50, EDF scheduling allows process
P, to continue running. P> now has a higher priority than P, because its next
deadline (at time 80) is earlier than that of Py (at time 100). Thus, both P; and P;
have met their first deadlines. Process P; again begins running at time 60 and
completes its second CPU burst at time 85, also meeting its second deadline at
time 100. P; begins running at this point, only to be preempted by P, at the
start of its next period at time 100. P; is preempted because P; has an eartier
deadline (time 150) than P, (time 160). At time 125, P, completes its CPU burst
and P, resumes execution, {inishing at time 145 and meeting its deadline as
well. The system is idle until time 150, when P, is scheduled to run once again.

Unlike the rate-monotonic algorithm, EDF scheduling does not require that
processes be periodic, nor must a process require a constant amount of CPU
time per burst. The only requirement is that a process announce its deadline
to the scheduler when it becomes runnable. The appeal of EDF scheduling is
that it is theoretically optimal —theoretically, it can schedule processes so that
each process can meet its deadline requirements and CPU utilization will be
100 percent. In practice, however, it is impossible to achieve this level of CPU
utilization due to the cost of context switching between processes and interrupt
handling,.

19.5.3 Proportional Share Scheduling

Proportional share schedulers operate by allocating T shares among all
applications. An application can receive N shares of time, thus ensuring that the
application will have N/T of the total processor time. As an example, assume
that there is a total of T = 100 shares to be divided among three processes, A,

686

Chapter 19

B, and C. Ais assigned 50 shares, B is assigned 15 shares, and C is assigned
20 shares. This scheme ensures that A will have 50 percent of total processor
time, B will have 15 percent, and C will have 20 percent.

Proportional share scheduters must work in conjunction with an admission
control policy to guarantee that an application receives its allocated shares
of time. An admission control policy will only admit a client requesting a
particular number of shares if there are sufficient shares available. In our current
example, we have allocated 50 + 15 + 20 = 75 shares of the tofaf of 100 shares,
If a new process D requested 30 shares, the admission controller would deny
£7 entry into the system.

19.5.4 Pthread Scheduling

The POSIX standard also provides extensions for real-time computing—
POSIX.1b, In this section, we cover some of the POSIX Pthread APl related
to scheduling real-time threads. Pthreads defines two scheduling classes for
real-time threads:

SCHED_FIFQ
SCHED RR

SCHED FIFO schedules threads according to a first-come, first-served policy
using a FIFO queue as outlined in Section 5.3.1. However, there is no time slicing
among threads of equal priority. Therefore, the highest-priority real-time thread
at the front of the FIFO queue will be granted the CPU until it terminates
or blocks. SCHED RR (for round-robin) is similar to SCHED_FIFO except that
it provides time slicing among threads of equal priority. Pthreads provides
an additional scheduling class—SCHED_ OTHER—but its implementation is
undefined and system specific; it may behave differently on different systems.

The Pthread APl specifies the following two functions for getting and
setting the scheduling policy:

pthread attr _getsched policy(pthread attr t *attr, int
*policy)

pthread_attr_getsched policy{pthread attr_t *attr, int
policy)

The first parameter to both functions is a pointer to the set of attributes for
the thread. The second parameter is either a pointer to an integer that is
set to the current scheduling policy (for pthread_attr_getsched.policy())
or an integer value—SCHEDFIFO, SCHED.RR, or SCHED.OTHER—for the
pthread attr_getsched policy{() function. Both functions return non-zero
values if an error occurs.

In Figure 19.11, we illustrate a Pthread program using this APl This
program first determines the current scheduling policy followed by setting
the scheduling algorithm to SCHED_OTHER.

19.5 687

#include <pthread.h>
#include <stdio.h>
#define NUM_THREADS 5

int main{int argc, char *argvi{l)
int i, policy;
pthread.t tid[NUM_THREADS] ;
pthread_attr_t attr;

/* get the default attributes */
pthread_attr_init {&attr) ;

/* get the current scheduling policy */
if (pthread.attr_getschedpolicy(&attr, &policy) != 0;
fprinti(stderr, "Unable to get policy.\n"};
else {
if {poliecy == SCHED.OTHER)
printf ("SCHED OTHER\n") ;
else if (policy == SCHED.RR}
printf {"SCHED RR\n") ;
else if (policy == SCHED_FIFOQ)
printf ("SCHED_FIFO\n") ;

}

/* set the scheduling pelicy - FIFO, RR, or OTHER */
if (pthread.attr_setschedpolicy{&attr, SCHED.OTHER) != 0)
fprintf (stderr, "Unable to set policy.\n"i;

/* create the threads */
for (i = 0; 1 < NUM_THREARDS; i++)
pthreadycreate(&tid[i],&attr,runner,NULL);

/* now join on each thread */
for {1 = 0; i < NUM_THREADS; i++)
pthread_join{tid([i], NULL}:

/* Each thread will begin control in this function */
void *runner (veid *param)
{

/* do some work ... */

pthread exit (0) ;

Figure 19.11 Pthread scheduting AFi.

688

19.6

Chapter 19

In this section, we describe VxWorks, a popular real-time operating system
providinig hard real-time support. VxWorks, commercially developed by Wind
River Systems, is widely used in automobiles, consumer and industrial devices,
and networking equipment such as switches and routers. VxWorks is also used
to control the two rovers—Spirit and Opportunity—that began exploring the
planet Mars in 2004.

The organization of VxWorks is shown in Figure 19.12. VxWorks is centered
around the Wind microkernel. Recall from our discussion in Section 2.7.3 that
microkernels are designed so that the operating-system kernel provides a bare
minimum of features; additional utilities, such as networking, file systems,
and graphics, are provided in libraries outside of the kernel. This approach
offers many benefits, including minimizing the size of the kernel—a desirable
feature for an embedded system requiring a small footprint.

The Wind microkernel supports the following basic features:

-

Processes. The Wind microkernel provides support for individual pro-
cesses and threads (using the Pthread API). However, similar to Linux,
VxWorks does not distinguish between processes and threads, instead
referring to both as tasks.

Scheduling. Wind provides two separate scheduling models: preemptive
and nonpreemptive round-robin scheduling with 256 different pricrity
levels. The scheduler also supports the POSIX AP for real-time threads
covered in Section 19.5.4.

embedded real-time application

Java library

POSIX library) {

ESRLE RO R e R

virtual memory . g(aphics
VxVMI T library :

Wind microkernsl|

Figure 19.12 The organization of VxWorks.

19.7

19.7 ..o 689

Interrupts. The Wind microkernel also manages interrupts. To support
hard real-time requirements, interrupt and dispatch latency times are
bounded.

Interprocess communication. The Wind microkernel provides both shared
memory and message passing as mechanisms for communication between
separate tasks. Wind also allows tasks to communicate using a technique
known as pipes—a mechanism that behaves in the same way as a FIFO
queue but allows tasks to communicate by writing to a special file, the pipe.
To protect data shared by separate tasks, VxWorks provides semaphores
and mutex locks with a priority inheritance protocol to prevent priority
inversion.

Outside the microkernel, VxWorks includes several component libraries
that provide support for POSIX, Java, TCP/IP networking, and the like. All
components are optional, allowing the designer of an embedded system to
customize the system according to its specific needs. For example, if networking
is not required, the TCP/IP library can be excluded from the image of the
operating system. Such a strategy allows the operating-system designer to
include only required features, thereby minimizing the size—or footprint—of
the operating system.

VxWorks takes an interesting approach to memory management, support-
ing two levels of virtual memory. The first level, which is quite simple, allows
control of the cache on a per-page basis. This policy enables an application
to specify certain pages as non-cacheable. When data are being shared by
separate tasks running on a multiprocessor architecture, it is possible that
shared data can reside in separate caches local to individual processors. Unless
an architecture supports a cache-coherency policy to ensure that the same
data residing in two caches will not be different, such shared data should not
be cached and should instead reside only in main memory so that all tasks
maintain a consistent view of the data.

The second level of virtual memory requires the optional virtual memory
component VxVMI (Figure 19.12), along with processor support for a memory
management unit (MMU). By loading this optional component on systems with
an MMU, VxWorks allows a task to mark certain data areas as private. A data area
marked as private may only be accessed by the task it belongs to. Furthermore,
VxWorks allows pages containing kernel code along with the interrupt vector
to be declared as read-only. This is useful, as VxWorks does not distinguish
between user and kernel modes; all applications run in kernel mode, giving an
application access to the entire address space of the system.

A real-time system is a computer system requiring that results arrive within
a deadline period; results arriving after the deadline has passed are useless.
Many real-time systems are embedded in consumer and industrial devices.
There are two types of real-time systems: soft and hard real-time systems.
Soft real-time systems are the least restrictive, assigning real-time tasks higher
scheduling priority than other tasks. Hard real-time systems must guarantee

690

Chapter 19

that real-time tasks ate serviced within their deadline periods. In addition to
strict timing requirements, real-time systems can further be characterized as
having only a single purpose and running on small, inexpensive devices.

To meet timing requirements, real-time operating systems must employ
various techniques. The scheduler for a real-time operating system must sup-
port a priority-based algorithm with preemption. Furthermore, the operating
system must allow tasks running in the kernel to be preempted in favor
of higher-priority real-time tasks. Real-time operating systerus also address
specific liming issues by minimizing both interrupt and dispatch latency.

Real-time scheduling algorithms include rate-menotonic and earliest-
deadline-first scheduling. Rate-monotonic scheduling assigns tasks that
require the CPL more often a higher priority than tasks that require the
CPU less often. Earliest-deadline-first scheduling assigns priority according
to upcoming deadlines—the earlier the deadline, the higher the priority.
Proportional share scheduling uses a technique of dividing up processor time
into shares and assigning each process a number of shares, thus guaranteeing
each process its proportional share of CPU time. The Pthread API provides
various features for scheduling real-time threads as well.

19.1 Tdentify whether hard or soft reai-time scheduling is more appropriate
in the following environments:

Thermostat in a household
b. Control system for a nuclear power plant
c. Fuel economy system in an automobile
d. Landing systemn in a jet airliner

19.2 Discuss ways in which the priority inversion problem could be
addressed in a real-time system. Also discuss whether the, solutions
could be implemented within the context ef a proportional share
scheduler,

19.3 The Linux 2.6 kernei can be built with no virtual memory system.
Explain Tow this feature may appeal to designers of real-time systems.

19.4 Under what circumstances is rate-monotonic scheduling inferior to
earlicst-deadline-first scheduling in meeting the deadlines associated
with processes?

19.5 Consider two processes, I and P, where py = 50, == 25, p2 = 75,
and H = 30.

a. Can these two processes be scheduled using rate-monotonic
scheduling? Hiustrate your answer using a Gantt chart.

b. Tustrate the scheduling of these two processes using earliest-
deadline-first (EDF) scheduling.

19.6 What are the various components of interrupt and dispatch latency?

091

19.7 Explain why interrupt and dispatch latency times must be bounded in
a hard real-time system.

The scheduling algorithms for hard real-time systems, such as rate monotonic
scheduling and earliest-dead!line-first scheduling, were presented in Liu and
Layland [1973]. Other scheduling algorithms and extensions to previous algo-
rithms were presented in Jensen et al. [1985], Lehoczky et al. [1989], Audsley
etal.[1991], Mok [1983], and Stoica etal, [1996]. Mok {1983] described a dynamic
priority-assignment algorithm called least-laxity-first scheduling. Stoica et al.
[1996] analyzed the proportional share algorithm. Useful information regard-
ing various popular operating systems used in embedded systems can be
obtained from http:/ /rtlinux.org, http:/ /windriver.com, and hitp:/ /qnx.com.
Future directions and important research issues in the field of embedded
systems were discussed in a research article by Stankovic [1996].

2041

CHAPTER

In earlier chapters, we gener:lly concerned ourse es with how operating
systems handle conventicnal data, such as text files, programs, biparies, word-
processing documents, and spreadsheets. However, operating systems may
have to handle other kinds of data as well. A recent trend in technology
is the incorporation of multimedia data into computer systems. Multime-
dia data consist of continuous-media (audio and video) data as well as
conventional files. Continuous-media data differ from conventional data in
that continuous-media data—such as frames of video—must be delivered
(streamed) according to certain time restrictions (for example, 30 frames per
s >ond). in this chapter, we explore the demands of continuous-media data,
We alsp discuss in more detail how such data differ from conventional data
and how these differences affect the design of operating systems that support
the requirements of multimedia systems.

The term multimedia describes a wide range of applications that are in
popular use today. These include audio and video files such as MP3 audio
files, DVD movies, and short video clips of movie previews or news stories
downloaded over the Internet. Multimedia applications also include live
webcasts (broadcast over the World Wide Web) of speeches or sporting
events and even live webcams that allow a viewer in Manhattan to observe
customers at a cafe in Paris. Multimedia applications need not be either audio
or video; rather, a multimedia application often includes a combination of
both. For example, a movie may consist of separate audio and video tracks.
Nor must multimedia applications be delivered only to desktop persenal
computers. Increasingly, they are being directed toward smaller devices,
including personal digital assistants (PDAs) and cellular telephones. For
example, a stock trader may have stock quotes delivered in real time to her
PDA.

In this section, we explore several characteristics of multimedia systems
and examine how multimedia files can be delivered from a server to a client

693

694

Chapter 20

system. We also look at common standards for representing multimedia video
and audio files.

20.11 Media Delivery

Multimedia data are stored in the file system just like any other data. The major
difference between a regular file and a multimedia file is that the multimedia file
must be accessed at a specific rate, whereas accessing the regular file requires
no special iming. Let’s use video as an example of what we mean by “rate.”
Video is represented by a series of images, formally known as frames, that
are displayed in rapid succession. The faster the frames are displayed, the
smoother the video appears. In general, a rate of 24 to 30 frames per second is
necessary for video to appear smooth to human eyes. (The eye retains the image
of each frame for a short time after it has been presented, a characteristic known
as persistence of vision. A rate of 24 to 30 frames per second is fast encugh
to appear continuous.) A rate lower than 24 frames per second will result in
a choppy-looking presentation. The video file must be accessed from the file
System at a rate consistent with the rate at which the video is being displayed.
We refer to data with associated rate requirements as continnous-media data.

Multimedia data may be delivered to a client either from the local file
system or from a remote server. When the data are delivered from the local file
system, we refer to the delivery as local playback. Examples include watchin 5
a DVD on a laptop computer or listening to an MP3 audio file on a handheld
MP3 player. In these cases, the data comprise a reguiar file that is stored on
the local file system and played back (that is, viewed or listened to) from that
system.

Multimedia files may also be stored on a remote server and delivered to a
client across a network using a technique known as streaming. A client may be
a personal computer or a smaller device such as a handheld computer, PDA, or
cellular telephone. Data from live continuous media—such as live webcams
—are also streamed from a server to clients.

There are two types of streaming techniques: progressive download and
real-time streaming. With a progressive download, a media file containing
audio or video is downloaded and stored on the clients local file system. As
the file is being downloaded, the client is able to play back the media filc
without having to wait for the file to be downloaded in its entirety. Because
the media file is ultimately stored on the client system, progressive download
is most useful for relatively small media files, such as short video clips.

Real-time streaming differs from progressive download in that the media
tile is streamed to the client but is only plaved —and not stored —by the client.
Because the media file is not stored on the clicat system, real-time streaming
i preferable to progressive download for media files that might be too large
for storage on the system, such as long videos and Internet radio and {v
broadcasts.

Both progressive download and real-time streaming may allow a client to
move to different points in the stream, just as you can use the tast-forward and
rewind operations on a VCR controller to move to different points in the VR
tape. For example, we could move to the end of a 5-minute streaming video or
veplay a certain section of a movie clip. The ability to move around within the
media stream is known as random access.

201 : 695

Two types of real-time streaming are available: live sireaming and on-
demand streaming. Live streaming is used to deliver anevent, such as a concert
or a lecture, live as it is actually occurring. A radio program broadcast over the
Internet is an example of a live real-time stream. In fact, one of the authors of
this text regularly listens to a favorite radio station from Vermont while at his
home in Utah as it is streamed live over the Internet. Live real-time streaming is
also used for applications such as live webcams and video conferencing, Due to

its live delivery, this type of real-time streaming does not allow clients rasdom
access to different poirts in the media stream. In addition, live delivery means
that a client who wishes to view {or listen to} a particular live stream already
in progress will “join” the session “late,” thereby missing earlier portions of
the stream. The same thing happens with a live TV or radio broadcast. If you
start watching the 7:00 PM. news at 7:10 DM, you will have missed the first 10
minutes of the broadcast.

On-demand streaming is used to deliver media streams such as full-length
movies and archived lectures. The difference between live and on-demand
streaming is that on-demand streaming does not take place as the event is
occurring, Thus, for example, whereas watching a live stream is like watching
anews broadcast on TV, watching an on-demand stream is like viewing a movie
on a DVD player at some convenient time - there is no notion of arrving late.
Depending o the type of on-demand streaming, a client may or may not have
random access to the stream.

Examples of well-known streaming media products include RealPlayer,
Apple QuickTime, and Windows Media Player. These products include both
servers that stream the media and client media players that are used for
playback.

20.1.2 Characteristics of Multimedia Systems

The demands of multimedia systems are untike the demands of traditional
applications. In general, multimedia systems may have the following charac-
teristics:

Multimedia files can be quite large. For example, a 100-minute MPEG-1
video file requires approximately 1.125 GB of storage space; 100 minutes
of high-definition television (HDTV) requires approximately 15 GB of
storage. A server storing hundreds or thousands of digital video files
may thus require several terabytes of storage.

Continuous media may require very high data rates. Consider digital
video, in which a frame of color video is displayed at a resolution of
800 x 600. If we use 24 bits to represent the color of each pixel {which
allows us to have 22, or roughly 16 million, different colors), a single
frame requires 800 x 600 x 24 = 11. 520. 000 bits of data. If the frames are
displayed at a rate of 30 frames per second, a bandwidth in excess of 345
Mbps is required.

Multimedia applications are sensitive to timing delays during playback.
Once a continuous-media file is delivered to a client, delivery must
continue at a certain rate during plavback of the media; otherwise, the
listener or viewer will be subjected to pauses during the presentation.

H96

20.2

Chapter 20

20.1.3 Operating-System Issues

For a computer system to deliver continuous-media data, it must guarantee
the specific rate and timing requirements—also known as quality of service,
or QoS, requirements-—of continuous media.

Providing these Qo$ guarantees affects several components in a com-
puter system and influences such operating-system issues as CPU scheduling,
disk scheduling, and network management. Specific examples inciude the
following:

Compression and decoding may require significant CPU processing.

Multimedia tasks must be scheduled with certain priorities to ensure
meeting the deadline requirements of continuous media.

Similarly, file systems must be efficient to meet the rate requirements of
continuous media.

Network protocols must support bandwidth requirements while mini-
mizing delay and jitter.

In later sections, we explore these and several other issues related to Qos.
First, however, we provide an overview of various techniques for compressing
multimedia data. As suggested above, compression makes significant demands
on the CPU.

Because of the size and rate requirements of multimedia systems, multimedia
files are often compressed from their original form to a much smaller form.
Once a file has been compressed, it takes up less space for storage and can be
delivered to a client more quickly. Compression is particularly important when
the content is being streamed across a network connection. In discussing file
compression, we often refer to the compression ratio, which is the ratio of the
original file size to the size of the compressed file. For example, an 800-KB file
that is compressed to 100 KB has a compression ratio of 8:1,

Once a file has been compressed (encoded), it must be decompressed
(decoded) before it can be arcessed. A feature of the algorithm used to compress
the file affects the later ciecompression. Compression algorithms are classified
as either Tossy or lossless. With lossy compression, some of the original data
are lost when the file is decoded, whereas lossless compression ensures that
the compressed file can always be restored back to its original form. In general,
lossy techniques provide much higher compression ratios. Obvious] y. though,
only certain types of data can tolerate lossy compression—namely, images,
audio, and video. Lossy compression algorithms often work by eliminating
certain data, such as verv high or low frequencies thai a human ear cannot
detect. Some lossy compression algorithms used on video operate by storing
only the differences between successive frames. Lossless algorithims are used

20.2 6497

for compressing text files, such as computer programs (for example, zipping
files), because we want to restore these compressed files to their original state.

A number of different lossy compression schemes tor continuous-media
data are commercially available. In this scction, we cover one used by the
Moving Picture Experts Group, better known as MPEG.

MPEG refers to a set of file formats and compression standards for digital
video. Because digital video often contains an audio portion as well, each of
the standards is divided into three layers. Layers 3 and 2 apply to the audio
and video portions of the media file. Layer 1 is known as the systems layer and
contains timing information to allow the MPEG player to multiplex the audio
and video portions so that they are synchronized during playback. There are
three major MPEG standards: MPEG-1, MPEG-2, and MPEG-4.

MPEG-1 is used for digital video and its associated audio stream. The
resolution of MPEG-1 is 352 x 240 at 30 frames per second with a bit rate of up to
1.5 Mbps. This provides a quality slightly lower than that of conventional VCR
videos. MP3 audio files (a popular medium for storing music) use the audio
layer (layer 3) of MPEG-1. For video, MPEG-1 can achieve a compression ratio of
up to 200:1, although in practice compression ratios are much lower. Because
MPEG-1 does not require high data rates, it is often used to download short
video clips over the Internet.

MPEG-2 provides better quality than MPEG-1 and is used for compressing
DVD movies and digital television (including high-definition television, or
HDTV). MPEG-2 identifies a number of levels and profiles of video compression.
The level refers to the resolution of the video; the profile characterizes the
video's quality. In general, the higher the level of resolutior and the better
the quality of the video, the higher the required data rate. Typical bit rates
for MPEG-2 encoded files are 1.5 Mbps to 15 Mbps. Because MPEG-2 requires
higher rates, it is often ursuitable for delivery of video across a network and
is generally used for local playback. '

MPEG-4 is the most recent of the standards and is used to transmit
audio, video, and graphics, including two-dimensional and three-dimensional
animation layers. Animation makes it possible for end users to interact with
the file during playback. For example, a potential home buyer can download
an MPEG-4 file and take a virtual tour through a home she is considering
purchasing, moving from room to room as she chooses. Another appealing
feature of MPEG-4 is that it provides a scalable level of quality, allowing delivery
over relatively slow network connections such as 56-Kbps modems or over
high-speed local area networks with rates of several megabits per second.
Furthermore, by providing a scalable level of quality, MPEG-4 audio and video
files can be delivered to wireless devices, including handheld computers, PDAs,
and cell phones.

All three MPEG standards discussed here perform lossy compression
to achieve high compression ratios. The fundamental idea behind MPEG
compression is to store the differences between successive frames. We do not
cover further details of how MPEG performs compression but rather encourage
the interested reader to consult the bibliographical notes at the end of this
chapter.

698

20.3

Chapter 20

As a result of the characteristics described in Section 20.1.2, multimedia
applications often require levels of service from the operating system that differ
from the requirements of traditional applications, such as word processors,
compilers, and spreadsheets. Timing and rate requirements are perhaps the
issties of foremost concern, as the playback of audio and video data demands
that the data be delivered within a certain deadline and at a continuous,
fixed rate. Traditional applications typically do not have such time and rate
constraints.

lasks that request data at constant intervals—or periods— are known as
periodic processes. For example, an MPEG-1 video might require a rate of 30
frames per second during playback. Maintaining this rate requires that a frame
be delivered approximately every 1/30'" or 3.34 hundredths of a second. To put
this in the context of deadlines, let’s assume that frame F ; succeeds frame F; in
the video playback and that frame F; was displayed at time T.. The deadline
for displaying frame F; is 3.34 hundredths of a second after time Ty. If the
operating system is unable to display the frame by this deadline, the frame
will be omitted from the stream.

As mentioned earlier, rate requirements and deadlines are known as quality
of service (QoS) requirements. There are three QoS levels:

Best-effort service. The system makes a best-effort attempt to satisfy the
requirements; however, ne guarantees are made.

SoftQos. This level treats different types of traffic in different ways, giving
certain traffic streams higher priority than other streams. However, just
as with best-effort service, no guarantees are made.

Hard QoS. The quality-of-service requirements are guaranteed.

Iraditional operating systems—the systems we have discussed in this
text so far—typically provide only best-effort service and rely on overpro-
visioning; that is, they simply assume that the total amount of resources
available will tend to be larger than a worst-case workload would demand. If
demand exceeds resource capacity, manual intervention must take place, and
a process \or several processes) must be removed from the system. However
next-generation multimedia systems cannot make such assumptions. These
systems must provide continuous-media applications with the guarantees
made possible by hard QoS. Therefore, in the remainder of this discussion,
when we refer to QuSs, we mean hard Qos. Next, we explore various techniques
that enable multimedia systems to provide such service-level guarantees.

There are a number of parameters defining Qos for multimedia applica-
tions, including the following:

Throaghput. Throughput s the total amount of work done during a certain
interval. For multimedia applications, throughput is the required data rate.

Delay. Delay refers to the elapsed time from when a request is first
submitted to when the desired result is produced. For example, the time
from when a client reqjuests a media stream to when the stream is delivered
is the delay.

20.3 699

Jitter. Jitter is related to delay; but whereas delay refers to the time a
client must wait to receive a stream, jitter refers to delays that occur
during playback of the stream. Certain multimedia applications, such
as on-demand real-time streaming, can tolerate this sort of delay. Jitter
is generally considered unacceptable for continuous-media applications,
however, because it may mean long pauses—or lost frames—during
playback. Clients can often compensate for jitter by buffering a certain
amount of data—say, 5 seconds’ worth—before beginning playback.

Reliability. Reliability refers to how errors are handled during transmis-
sion and processing of continuous media. Errors may occur due to lost
packets in the network or processing delays by the CPU. In these—and
other— scenarios, errors cannot be corrected, since packets typically arrive
too late to be useful.

The quality of service may be negotiated between the client and the server.
For example, continuous-media data may be compressed at different levels of
quality: the higher the quality, the higher the required data rate. A client may
negotiate a specific data rate with a server, thus agreeing to a certain level of
quality during playback. Furthermore, many media players allow the client
to configure the piayer according to the speed of the client’s connection to
the network. This allows a client to receive a streaming service at a data rate
specific to a particular connection. Thus, the client is negotiating quality of
service with the content provider.

To provide QoS guarantees, operating systems often use admission control,
which is simply the practice of admitting a request tor service only if the server
has sufficient resources to satisfy the request. We see admission control quite
often in our everyday lives. For example, a movie theater only admits as
many customers as it has seats in the theater. (There are also many situations in
everyday life where admission control is not practiced but would be desirable!)
If no admission control policy is used in a multimedia environment, the
demands on the system might become so great that the system becomes unable
to meet its QoS guarantees.

In Chapter 6, we discussed using semaphores as a method of implementing,
a simple admission control policy. In this scenario, there exist a finite number
of non-shareable resources, When a resource is requested, we will only grant
the request if there are sufficient resources available; otherwise the requesting
process is forced to wait until a resource becomes available. Semaphores may be
used to implement an admission control policy by first initializing a semaphore
to the number of resources available. Every request for a resource is made
through a wait () operation on the semaphore; a resource is released with
an invocation of signal () on the semaphore. Once all resources are in use,
subsequent calls to wait (} block until there is a corresponding signal (3.

A common technique for implementing admission control is to use
resource reservations. For example, resources on a file server may include
the CPU, memory, file system, devices, and network (Figure 20.1). Note that
resources may be either exclusive or shared and that there may be either
single or multiple instances of each resource type. To use a resource, a client
must make a reservation request for the resource in advance. If the request
cannot be granted, the reservation is denied. An admission control scheme

700

Chapter 20

secondary
storage

/O bus

Figure 20.1 Resources on a file server.

assigns a resource manager to each type of resource. Requests for resources
have associated QoS requirements—for example, required data rates. When a
request for a resource arrives, the resource manager determines if the resource
can meet the QoS demands of the request. If not, the request may be rejected,
or a lower level of Qo$ may be negotiated between the client and the server.
If the request is accepted, the resource manager reserves the resources for the
requesting client, thus assuring the client the desired QoS requirements. In
Section 20.7.2, we examine the admission control algorithm used to ensure Qo$
guarantees in the CineBlitz multimedia storage server.

204

e e ety

In Chapter 19, which covered real-time systems, we distinguished between
soft real-time systems and hard real-time systems. Soft real-time systems
simply give scheduling priority to critical processes. A soft real-time system
ensures that a critical process will be given preference over a noncritical process
but provides no guarantee as to when the critical process will be scheduled.
A typical requirement of cuntinuous media, however, is that data must be
delivered to a client by a certain deadline; data that do not arrive by the deadline
are unusable. Multimedia systems thus require hard real-time scheduling to
ensure that a critical task will be serviced within a guaranteed period of time.

Another scheduling issue concerns whether a scheduling algorithm uses
Static priority or dynamic priority—a distinction we first discussed in Chapter
5. The difference between the two is that the priority of a process will remain
unchanged if the scheduler assigns it a static priority. Scheduling algorithms
that assign dynamic priorities allow priorities to change over time. Most
operating systems use dynamic priorities when scheduling non-real-time tasks
with the intention of giving higher priority to interactive processes. However,
when scheduling real-time tasks, most systems assign static priorities, as the
design of the scheduler is less complex.

205 . A 701

Several of the real-time scheduling strategies discussed in Section 19.5 can
be used to meet the rate and deadline QoS requirements of continuous-media
applications.

We first discussed disk scheduling in Chapter 12. There, we focused primarily
on systems that handle conventional data; for these systems, the scheduling
goals are fairness and throughput. As a result, most traditional disk schedulers
employ some form of the SCAN (Section 12.4.3) or C-SCAN (Section 12.4.4)
algorithm.

Continuous-media files, however, have two constraints that conventional
data files generally do not have: timing deadlines and rate requirements.
These two constraints must be satisfied to preserve QoS guarantees, and disk-
scheduling algorithms must be optimized for the constraints. Unfortunately,
these two constraints are often in conflict. Continuous-media files typically
require very high disk-bandwidth rates to satisfy their data-rate requirements.
Because disks have relatively low transfer rates and relatively high latency
rates, disk schedulers must reduce the latency times to ensure high bandwidth.
However, reducing latency times may result in a scheduling policy that does
not prioritize according to deadlines. In this section, we explore two disk-
scheduling algorithms that meet the QoS requirements for continuous-media
systems.

20.5.1 Earliest-Deadline-First Scheduling

We first saw the earliest-deadline-first (EDF) algorithm in Section 19.5.2 as an
example of a CPU-scheduling algorithm that assigns priorities according to
deadlines. EDF can also be used as a disk-scheduling algorithm; in this context,
EDF uses a queue to order requests according to the time each request must be
completed (its deadline). EDF is similar to shortest-seek-time-first (SSTF), which
was discussed in 12.4.2, except that instead of servicing the request closest to
the current cylinder, we service requests according to deadline--the request
with the closest deadline is serviced first.

A problem with this approach is that servicing requests strictly according
to deadline may result in higher seek times, since the disk heads may move
randomly throughout the disk without any regard to their current position.
For example, suppose a disk head is currently at cylinder 75 and the queuc
of cylinders (ordered according to deadiines) is 98, 183, 105. Under strict EDY
scheduling, the disk head will move from 75, to 98, to 183, and then back to
105. Note that the head passes over cylinder 105 as it travels from 98 to 183. It
is possible that the disk scheduler could have serviced the request for cvlinder
105 en route to cylinder 183 and still preserved the deadline requirement for
cylinder 183,

20.5.2 SCAN-EDF Scheduling

The fundamental problem with strict EDF scheduling is that it ignores the
position of the read-write heads of the disls; it is possible that the movement of
the heads will swing wildly to and fro across the disk, leading to unacceptable

702

Chapter 20

seek times that negatively affect disk throughput. Recall that this is the same
issue faced with FCFS scheduling {Section 12.4.1). We ultimately addressed
this issue by adopting SCAN scheduling, wherein the disk arm moves in one
direction across the disk, servicing requests according to their proximity to
the current cylinder. Once the disk arm reaches the end of the disk, it begins
moving in the reverse direction. This strategy optimizes seek times.

SCAN-EDF is a hybrid algorithm that combines EDF with SCAN scheduling.
SCAN-EDF starts with EDF ordering but services requests with the same deadline
using SCAN order. What if several requests have different deadlines that are
relatively close together? In this case, SCAN-EDF may batch requests, using
SCAN ordering to service requests in the same batch. There are many techniques
for batching requests with similar deadlines; the only requirement is that
reordering requests within a batch must not prevent a request from being
serviced by its deadline. If deadlines are equally distributed, batches can be
organized in groups of a certain size—say, 10 requests per batch.

Another approach is to batch requests whose deadlines fall within a given
time threshold—say, 00 milliseconds. Let’s consider an example in which
we batch requests in this way. Assume we have the requests shown in Figure
20.2, each with a specified deadline (in milliseconds) and the cylinder being
requested:

Suppose we are at fintey, the cylinder currently being serviced is 50, and the
disk head is moving toward cylinder 51. According to vur batching scheme,
requests D and F will be in the first batch; A, G, and H in batch 2; B, E, and
J in batch 3; and C and 1 in the last batch. Requests within each batch will
be ordered according to SCAN order. Thus, in batch 1, we will first service
request F and then request D. Note that we are moving downward in cylinder
numbers, from 85 to 31. In batch 2, we first scrvice request A; then the heads
begin moving upward in cylinders, servicing requests H and then G. Batch 3
is serviced in the order E, B, |. Requests 1 and C are serviced in the final batch.

request deadline cylinder
A 150 25
B 201 - 112
C 399 95
D 94 31
E 295 185
F 78 85
G 165 150
O H 125 101
' 1 300 85
J 210 90

Figure 20.2 Set of requests.

20.6 - 703
20.6

Perhaps the foremost QoS issue with multimedia systems concerns preserving
rate requirements. For example, if a client wishes to view a video compressed
with MPEG-1, the quality of service greatly depends on the system’s ability to
deliver the frames at the required rate..

Our coverage of issues such as CPU- and disk-scheduling algorithms has
focused on how these techniques can be used to better meet the quality-of-
service requirements of multimedia applications. However, if the media file is
being streamed over a network-—perhaps the Internet —issues relating to how
the network delivers the multimedia data can also significantly affect how Qus
demands are met. In this section, we explore several network issues related to
the unique demands of continuous media.

Before we proceed, it is worth noting that computer networks in general
—and the Internet in particular— currently do not provide network protocols
that can ensure the delivery of data with timing requirements. (There are
some proprietary protocols—notably those running on Cisco routers—that
do allow certain network traffic to be prioritized to meet (}0$ requirements.
Such proprietary protocols are not generalized for use across the Internet and
therefore do not apply to our discussion.)

When data are routed across a network, it is likely that the transmission
will encounter congestion, delays, and other network traffic issues—issues
that are beyond the control of the originator of the data. For multimedia data
with timing requirements, any timing issues must be synchronized between
the end hosts: the server delivering the content and the client playing it back.

One protocol that addresses timing issues is the real-time transport
protocol (RTP). RTP is an Internet standard for delivering real-time data,
including audio and video. It can be used for transporting media formats
such as MP3 audio files and video files compressed using MPEG. RTP does not
provide any QoS guarantees; rather, it provides features that allow a receiver
to remove jitter introduced by delays and congestion in the network.

In following sections, we consider two other approaches for handling the
unique requirements of continuous media.

20.6.1 Unicasting and Multicasting

In general, there are three methods for delivering content from a server to a
client across a network:

Unicasting. The server delivers the content to a single client. If the content
is being delivered to more than one client, the server must establish a
separate unicast for each client.

Broadcasting. The server delivers the content to all clients, regardless of
whether they wish to receive the content or not.

Multicasting. The server delivers the content to a group of receivers who
indicate they wish to receive the content; this method lies somewhere
between unicasting and broadcasting.

An issue with unicast delivery is that the server must establish a separate
unicast session for each client. This seems especially wasteful for live real-time

704

Chapter 20

streaming, where the server must make several copies of the same content,
one for each client. Obviously, broadcasting is not always appropriate, as not
all clients may wish to receive the streamn. (Suffice to say that broadcasting is
typically only used across local area networks and is not possible across the
public Internet.)

Multicasting appears {0 be a reasonable compromise, since it allows the
server to deliver a single copy of the content to alt clients indicating that they
wish to receive it. The difficulty with multicasting from a practical standpoint is
that the clients must be physically close to the server or to intermediate routers
that relay the content from the originating server. If the route from the server
to the client must cross intermediate routers, the routers must also support
multicasting, Hf these conditions are not met, the delays incurred during routing
may result in violation of the timing requirements of the continuous media. In
the worst case, if a client is connected to an intermediate router that does not
support multicasting, the client wilt be unable to receive the multicast stream
atall!

Currently, most streaming media are delivered across unicast channels;
however, multicasting is used in various areas where the organization of
the server and clienits is known in advance. For example, a corporation with
several sites across a country may be able to ensure that all sites are connected
to multicasting routers and are within reasonable physical proximity to the
routers. The organization will then be able to deliver a presentation from the
chief executive officer using multicasting.

20.6.2 Real-Time Streaming Protocol

In Section 20.1.1, we described some featires of streaming media. As we noted
there, users may be able to randomly access a media stream, perhaps rewinding
or pausing, as they would with a VCR controller. How is this possible?

To answer this question, let’s consider how streaming media are delivered
to clients. One approach is to stream the media from a standard web server
using the hypertext transport protocol, or HTTP—the protecol used to deliver
documents from a web server. Quite often, clients use a media player, such
as QuickTime, ReaiPlayer, or Windows Media Player, to play back media
streamed from a standard web server. Typically, the client first requests a
metafile, which contains the location (possibly identified by a uniform resource
locator, or URL) of the streaming media file. This metafile is delivered to the
client’s web browser, and the browser then starts the appropriate media player
according to the type of media specified by the metafile. For example, a Real
Audio stream would require the RealPlayer, while the Windows Media Player
would be used to play back sireaming Windows media. The media player
then contacts the web server and reguests the streaming media. The stream
is delivered from the web server to the media player using standard HTTP
requests. This process is outlined in Figure 20.3.

The problem with delivering streaming media from a standard web server
is that HTTP is considered a stateless protocel; thus, a web server does not
maintain the state {(or status) of its connection with a client. As a result, it is
difficult for a client to pause during the delivery of streaming media content,
since pausing would require the web server to know where in the stream to
begin when the client wished to resume plavback.

20.6 : - 705

client sotver
web blowser m_b_m media player web server.
HTTP request k)r metafite |
metafile ’
§ metatile
HTTP request for media stream
“media stream
l;#A :

Figure 20.3 ' Streaming media from a conventional web server.

An alternative strategy is to use a specialized streaming server that
is designed specifically for streaming media. One protocol designed for
communication between streaming servers and media players is known as the
real-time streaming protocol, or RTSP. The significant advantage RTSP provides
over HTTP is a stateful connection between the client and the server, which
allows the client to pause or seek to random positions in the stream during
playback. Delivery of streaming media using RTSP is similar to delivery using
HTTP {Figure 20.3) in that the meta file is delivered using a conventional
web server. However, rather than using a web server, the streaming media
is delivered from a streaming server using the RTSP protocol. The operation of
RTSD is shown in Figure 20.4.

RTSP defines several commands as part of its protocol; these commands are
sent from a client to an RTSP streaming server. The commands include:

[

client
web browser media player straarning server

HTTP requestior metafils .

metafile

BLI

metafile

goon RTSP request for media stream

media stream

Figure 20.4 Real-time streaming protocol (RTSP).

706

20.7

Chapter 20

SETUP PLAY

TEARDCWN PAUSE
Figure 20.5 Finite-state machine representing RTSP.

SETUP. The server allocates resources for a client session.

PLAY. The server delivers a stream to a client session established from a
SETUP command.

PAUSE. The server suspends delivery of a streamn but maintains the
resources for the session.

TEARDOWN. The server breaks down the connection and frees”up resources
allocated for the session.

The commands can be illustrated with a state machine for the server, as shown
in Figure 20.5. As you can see in the figure, the RTSP server may be in one of
three states: init, ready, and playing. Transitions between these three states are
triggered when the server receives one of the RTSP commands from the client.

Using RTSP rather than HTTP for streaming media offers several other
advantages, but they are primarily related to networking issues and are
therefore beyond the scope of this text. We encourage interested readers to
consult the bibliographical notes at the end of this chapter for sources of further
information.

The CineBlitz multimedia storage server is a high-performance media server
that supports both continuous media with rate requirements (such as video
and audio) and conventional data with no associated rate requirements (such
as text and images). CineBlitz refers to clients with rate requirements as real-
time clients, whereas non-real-time clients have no rate constraints, CineBlitz
guarantees to meet the rate requirements of real-time clients by implementing
an admission controller, admitting a client only if there are sufficient resources
to allow data retrieval at the required rate. In this section, we explore the
CineBlitz disk-scheduling and admission-control algorithms.

20.7.1 Disk Scheduling

The CineBlitz disk scheduler services requests in cycles. At the beginning of
each service cycle, requests are placed in C-5CAN order (Section 12.4.4). Recall
from our earlier discussions of C-SCAN that the disk heads move from one end
of the disk to the other. However, rather than reversing direction when they
reach the end of the disk, as in pure SCAN disk scheduling (Section 12.4.3), the
disk heads move back to the beginning of the disk.

20.7 707

disk

4
© to client

c O O ‘OOO

—t
double buffer

total butfer space (B}

Figure 20.6 Double buffering in CineBlitz.

20.7.2 Admission Control

The admission-control algorithm in CineBlitz must monitor requests from
both real-time and non-real-time clients, ensuring that both classes of clients
receive service. Furthermore, the admission controller must provide the rate
guarantees required by real-time clients. To ensure fairness, only a fraction p of
time is reserved for real-time clients, while the remainder, 1 - p, is set aside for
non-real-time clients. Here, we explore the admission controller for real-time
clients only; thus, the term client refers to a real-time client.

The admission controlier in CineBlitz monitors various system resources,
such as disk bandwidth and disk latency, while keeping track of available
buffer space. The CineBlitz admission controller admits a client only if there
is enough available disk bandwidth and buffer space to retrieve data for the
client at its required rate.

CineBlitz queues requests R;. Ry, Rs. ... R, for continuous media files where
r; is the required data rate for a given request R;. Requests in the queue are
served in cyclic order using a technique known as double buffering, wherein
a buffer is allocated for each request R; of size 2 x T xr:.

During each cycle I, the server must:

Retrieve the data from disk to buffer (I mod 2).
Transfer data from the {(/ + 1) mod 2) buffer to the clicnt.

This process is illustrated in Figure 20.6. For N clients, the total buffer space B
required is

N
Y 2xTxr <8 (20.1)

i=1

The fundamental idea behind the admission controller in CineBlitz is to
bound requests for entry into the queue according to the following criteria:

708

20.8

Chapter 20

The service time for each request is first estimated.

A request is admilted only if the sum of the estimated service times for
all admitted requests does not exceed the duration of service cycle T

Let T x r; bits be retrieved during a cycle for each real-time client R; withrater;.
If Ry, Ry, ...R, are the clients currently active in the system, then the admission
controller must ensure that the total times for retrieving T xr:. T xrp, ..., T xr,
bits for the corresponding real-time clients does not exceed T, We explore the
details of this admission policy in the remainder of this section.

If b is the size of a disk block, then the maximum number of disk blocks
that can be retrieved for request R during each cycleis [(T x7¢)/b7+1. The 1in
this formula comes from the fact that, if T x i is less than b, then it is possible
for T x r bits to span the last portion of one disk block and the beginning
of another, causing two blocks to be retrieved. We know that the retrieval of
a disk block involves (a) a seek to the track containing the block and (b) the
rotational delay as the data in the desired track arrives under the disk head. As
described, CineBlitz uses a C-8CAN disk—scheduling algorithm, so disk blocks
are retrieved in the sorted order of their positions on the disk.

If Lyt and 4., refer to the worst-case seek and rotational delay times, the
maximum latency incurred for servicing N requests is

A
- T xr

2 x tsa‘ek + § (’—Tﬂ[+ 1) X img. (202)
i=i

In this equation, the 2 x t.,. component refers to the maximum disk-seek
latency inciirred in a cycle. The second component reflects the sum of the
retrievals of the disk blocks multiplied by the worst-case rotational delay.

If the transfer rate of the disk is 4., then the time to transfer T x ¢ bits
of data for request Ry is (T x r¢)/ruer. As a result, the total time for retrieving
T xr,T xr. ..., T xr, bits for requests Ry, R», ..., R, is the sum of equation
20.2 and

N
T x ¥

= Tdisk

(20.3)

Therefore, the admission controller in CineBlitz only admits a new client R, if
at least 2 x T x r; bits of free buffer space are available for the client and the
following equation is satisfied:

N N N
Z T xr; ~T xr

2 x tsl’l’k + (f—"giil +]) X trnﬁ + E - < T, (204)
i=1

i=1 Paisk

Multimedia applications are in common use in modern computer systems.
Multimedia files include video and audio files, which may be delivered
to systems such as desktop computers, personal digital assistants, and cell
phones. The primary distinction between multimedia data and conventional

709

data is that multimedia data have specific rate and deadline requirements.
Because multimedia files have specific timing requirements, the data must
often be compressed before delivery to a client for playback. Multimedia data
may be delivered either from the local file system or from a muitimedia server
across a network connection using a technique known as streaming,

The timing requirements of multimedia data are known as quality-
of-service requirements, and conventional operating systems often cannot
make quality-of-service guarantees. To provide quality of service, multimedia
systems must provide a form of admission control whereby a system accepts a
request only if it can meet the quality-of-service level specified by the request.
Providing quality-of-service guarantees requires evaluating how an operating
system performs CPU scheduling, disk scheduling, and network management.
Both ¢PU and disk scheduling typically use the deadline requirements of
a continuous-media task as a scheduling criterion. Network management
requires the use of protocols that handle delay and jitter caused by the network
as well as allowing a client to pause or move to different positions in the stream
during playback.

20.1 Provide examples of multimedia applications that are delivered over
the Internet.

20.2 Distinguish between progressive download and real-time streaming.

20.3 Discuss what techniques could be used to meet quality-of-service
requirements for multimedia applications in the following components
of a system:

+ Process scheduler
* Disk scheduler

* Memory manager

20.4 Explain why the traditional Internet protocols for transmitting data are
not sufficient to provide the quality-of-service guarantees required for
a multimedia system. Discuss what changes are required to provide
the QoS guarantees.

20.5 A multimedia application consists of a set containing 100 images, 10
minutes of video, and 10 minutes of audio. The compressed sizes of the
images, video, and audio are 500 MB, 550 MB, and 8 MB, respectively.
The images were compressed at a ratio of 15 : 1, and the video and
audio were compressed at 200 : 1 and 10 : 1, respectively. What were
the sizes of the images, video, and audio before compression?

20.6 Assume that we wish to compress a digital video file using MFEG-1
technology. The target bit rate is 1.5 Mbps. If the video is displayed
at a resolution of 352 x 240 at 30 frames per second using 24 bits to
represent each color, what is the necessary compression ratio to achieve
the desired bit rate?

710

Chapter 20

20.7 The following table contains a number of requests with their associated
deadlines and cylinders. Requests with deadlines occurring within 100
milliseconds of each other will be batched. The disk head is currently
at cylinder 94 and is moving toward cylinder 95. If SCAN-EDF disk
scheduling is used, how are the requests batched together, and what is
the order of requests within each batch?

_request | deadie [cylinder
R1 57 77
R2 300 95
R3 250 25
R4 88 28
RS 85 100
R6 110 90
R7 299 50
R8 300 77
R9 120 12
R10 212 2

20.8 Repeat the preceding question, but this time batch requests that have
deadlines occurring within 75 miiliseconds of each other.

20.9 Describe why HTTP is often insufficient for delivering streaming media.

20.10 What operating principle is used by the CineBlitz system in performing
admission control for requests for media files?

Fuhrt[1994] provides a general overview of multimedia systems. Topics related
to the delivery of multimedia through networks can be found in Kurose
and Ross [2005]. Operating-system support for multimedia is discussed in
Steinmetz [1995] and Leslie et al. [1996]. Resource management for resources
such as processing capability and memory buffers are discussed in Mercer
et al. [1994] and Druschel and Peterson [1993]. Reddy and Wyllie [1994] give
a good overview of issues relating to the use of 1/0 in a multimedia system.
Discussions regarding the appropriate programming model for developing
multimedia applications are presented in Regehr et al. [2000]. An admission
control system for a rate-monotonic scheduler is considered in Lauzac et al.
[2003]. Bolosky et al. [1997] present a system for serving video data and discuss
the schedule-management issues that arise in such a system. The details of
a real-time streaming protocol can be found at http:// www.rtsp.org. Tudor
[1995] gives a tutorial on MPEG-2. A tutorial on video compression techniques
can be found at http:/ / www.wave-report.com/ tutorials/VC.htm.

Part Nine

We can now integrate the concepts described in this book by describing
real operating systems. Twao such systems are covered in great detail—
Linux and Windows XP. We chose Linux for several reasons: It is popular, it
i freely available, and it represents a full-featured UNIX system. This gives
a student of operating systems an opportunity to read—and modify—
real operating-system source code.

We also cover Windows XP in great detail. This recent operating
system from Microsoft is gaining popularity, not only in the stand-alone-
machine market, but aiso in the workgroup—server market. We chose
Windows XP because it provides an opportunity for us to study a mod-
ern operating system that has a design and implementation drastically
different from those of UNIX.

In addition, we briefly discuss other highly influential operating sys-
terms. We have chosen the order of presentation to highlight the sirmilari-
ties and differences among the systems; itis not strictly chronological and
does not reflect the relative importance of the systems.

Finally, we provide on-line coverage of three other systems. The
FreeBSD systern is another UNIX system. However, whereas Linux com-
bines features from several UNIX systemns, FreeBSD is based on the BSD
model of UNIX. FreeBSD source code, like Linux source code, is freely
available. The Mach operating system is a modern operating systerm that
provides compatibility with BSD UNIX. Windows is another modern oper-
ating system from Microsoft for Intel Pentium and later microprocessors;
it is cornpatible with MS-DOS and Microscft wWindows applications.

